Artwork

Treść dostarczona przez BlueDot Impact. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez BlueDot Impact lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Low-Stakes Alignment

13:56
 
Udostępnij
 

Manage episode 424087978 series 3498845
Treść dostarczona przez BlueDot Impact. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez BlueDot Impact lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Right now I’m working on finding a good objective to optimize with ML, rather than trying to make sure our models are robustly optimizing that objective. (This is roughly “outer alignment.”) That’s pretty vague, and it’s not obvious whether “find a good objective” is a meaningful goal rather than being inherently confused or sweeping key distinctions under the rug. So I like to focus on a more precise special case of alignment: solve alignment when decisions are “low stakes.” I think this case effectively isolates the problem of “find a good objective” from the problem of ensuring robustness and is precise enough to focus on productively. In this post I’ll describe what I mean by the low-stakes setting, why I think it isolates this subproblem, why I want to isolate this subproblem, and why I think that it’s valuable to work on crisp subproblems.

Source:

https://www.alignmentforum.org/posts/TPan9sQFuPP6jgEJo/low-stakes-alignment

Narrated for AI Safety Fundamentals by TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Rozdziały

1. Low-Stakes Alignment (00:00:00)

2. 1. What is the low-stakes setting? (00:01:07)

3. 2. Why do low stakes require only outer alignment? (00:01:49)

4. 3. Why focus on this subproblem first? (00:03:26)

5. 4. Is the low-stakes setting actually scary? (00:05:10)

6. 5. Why focus on "low stakes" rather than "outer alignment"? (00:06:09)

7. 6. More formal definition of low-stakes (00:07:23)

8. 7. More formal argument that outer alignment is sufficient (00:08:55)

9. 8. Why expect SGD to work online even for neural networks? (00:11:38)

83 odcinków

Artwork
iconUdostępnij
 
Manage episode 424087978 series 3498845
Treść dostarczona przez BlueDot Impact. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez BlueDot Impact lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Right now I’m working on finding a good objective to optimize with ML, rather than trying to make sure our models are robustly optimizing that objective. (This is roughly “outer alignment.”) That’s pretty vague, and it’s not obvious whether “find a good objective” is a meaningful goal rather than being inherently confused or sweeping key distinctions under the rug. So I like to focus on a more precise special case of alignment: solve alignment when decisions are “low stakes.” I think this case effectively isolates the problem of “find a good objective” from the problem of ensuring robustness and is precise enough to focus on productively. In this post I’ll describe what I mean by the low-stakes setting, why I think it isolates this subproblem, why I want to isolate this subproblem, and why I think that it’s valuable to work on crisp subproblems.

Source:

https://www.alignmentforum.org/posts/TPan9sQFuPP6jgEJo/low-stakes-alignment

Narrated for AI Safety Fundamentals by TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Rozdziały

1. Low-Stakes Alignment (00:00:00)

2. 1. What is the low-stakes setting? (00:01:07)

3. 2. Why do low stakes require only outer alignment? (00:01:49)

4. 3. Why focus on this subproblem first? (00:03:26)

5. 4. Is the low-stakes setting actually scary? (00:05:10)

6. 5. Why focus on "low stakes" rather than "outer alignment"? (00:06:09)

7. 6. More formal definition of low-stakes (00:07:23)

8. 7. More formal argument that outer alignment is sufficient (00:08:55)

9. 8. Why expect SGD to work online even for neural networks? (00:11:38)

83 odcinków

ทุกตอน

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi