Artwork

Treść dostarczona przez Kai Kunze. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Kai Kunze lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

UbiComp 2024 Distinguished Paper Award: MoCaPose: Motion Capturing with Textile-integrated Capacitive Sensors in Loose-fitting Smart Garments

8:16
 
Udostępnij
 

Manage episode 444861363 series 3605621
Treść dostarczona przez Kai Kunze. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Kai Kunze lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Today we deep dive into one publication that received a UbiComp 2024 distinguished paper awards.

We present MoCaPose, a novel wearable motion capturing (MoCap) approach to continuously track the wearer's upper body's dynamic poses through multi-channel capacitive sensing integrated in fashionable, loose-fitting jackets. Unlike conventional wearable IMU MoCap based on inverse dynamics, MoCaPose decouples the sensor position from the pose system. MoCaPose uses a deep regressor to continuously predict the 3D upper body joints coordinates from 16-channel textile capacitive sensors, unbound by specific applications. The concept is implemented through two prototyping iterations to first solve the technical challenges, then establish the textile integration through fashion-technology co-design towards a design-centric smart garment. A 38-hour dataset of synchronized video and capacitive data from 21 participants was recorded for validation. The motion tracking result was validated on multiple levels from statistics (R2 ~ 0.91) and motion tracking metrics (MP JPE ~ 86mm) to the usability in pose and motion recognition (0.9 F1 for 10-class classification with unsupervised class discovery). The design guidelines impose few technical constraints, allowing the wearable system to be design-centric and usecase-specific. Overall, MoCaPose demonstrates that textile-based capacitive sensing with its unique advantages, can be a promising alternative for wearable motion tracking and other relevant wearable motion recognition applications.

https://dl.acm.org/doi/10.1145/3580883

  continue reading

34 odcinków

Artwork
iconUdostępnij
 
Manage episode 444861363 series 3605621
Treść dostarczona przez Kai Kunze. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Kai Kunze lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Today we deep dive into one publication that received a UbiComp 2024 distinguished paper awards.

We present MoCaPose, a novel wearable motion capturing (MoCap) approach to continuously track the wearer's upper body's dynamic poses through multi-channel capacitive sensing integrated in fashionable, loose-fitting jackets. Unlike conventional wearable IMU MoCap based on inverse dynamics, MoCaPose decouples the sensor position from the pose system. MoCaPose uses a deep regressor to continuously predict the 3D upper body joints coordinates from 16-channel textile capacitive sensors, unbound by specific applications. The concept is implemented through two prototyping iterations to first solve the technical challenges, then establish the textile integration through fashion-technology co-design towards a design-centric smart garment. A 38-hour dataset of synchronized video and capacitive data from 21 participants was recorded for validation. The motion tracking result was validated on multiple levels from statistics (R2 ~ 0.91) and motion tracking metrics (MP JPE ~ 86mm) to the usability in pose and motion recognition (0.9 F1 for 10-class classification with unsupervised class discovery). The design guidelines impose few technical constraints, allowing the wearable system to be design-centric and usecase-specific. Overall, MoCaPose demonstrates that textile-based capacitive sensing with its unique advantages, can be a promising alternative for wearable motion tracking and other relevant wearable motion recognition applications.

https://dl.acm.org/doi/10.1145/3580883

  continue reading

34 odcinków

Alle Folgen

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi