Artwork

Treść dostarczona przez Zeta Alpha. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Zeta Alpha lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Baking the Future of Information Retrieval Models

27:05
 
Udostępnij
 

Manage episode 413396136 series 3446693
Treść dostarczona przez Zeta Alpha. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Zeta Alpha lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

In this episode of Neural Search Talks, we're chatting with Aamir Shakir from Mixed Bread AI, who shares his insights on starting a company that aims to make search smarter with AI. He details their approach to overcoming challenges in embedding models, touching on the significance of data diversity, novel loss functions, and the future of multilingual and multimodal capabilities. We also get insights on their journey, the ups and downs, and what they're excited about for the future.

Timestamps: 0:00 Introduction 0:25 How did mixedbread.ai start? 2:16 The story behind the company name and its "bakers" 4:25 What makes Berlin a great pool for AI talent 6:12 Building as a GPU-poor team 7:05 The recipe behind mxbai-embed-large-v1 9:56 The Angle objective for embedding models 15:00 Going beyond Matryoshka with mxbai-embed-2d-large-v1 17:45 Supporting binary embeddings & quantization 19:07 Collecting large-scale data is key for robust embedding models 21:50 The importance of multilingual and multimodal models for IR 24:07 Where will mixedbread.ai be in 12 months? 26:46 Outro

  continue reading

20 odcinków

Artwork
iconUdostępnij
 
Manage episode 413396136 series 3446693
Treść dostarczona przez Zeta Alpha. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Zeta Alpha lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

In this episode of Neural Search Talks, we're chatting with Aamir Shakir from Mixed Bread AI, who shares his insights on starting a company that aims to make search smarter with AI. He details their approach to overcoming challenges in embedding models, touching on the significance of data diversity, novel loss functions, and the future of multilingual and multimodal capabilities. We also get insights on their journey, the ups and downs, and what they're excited about for the future.

Timestamps: 0:00 Introduction 0:25 How did mixedbread.ai start? 2:16 The story behind the company name and its "bakers" 4:25 What makes Berlin a great pool for AI talent 6:12 Building as a GPU-poor team 7:05 The recipe behind mxbai-embed-large-v1 9:56 The Angle objective for embedding models 15:00 Going beyond Matryoshka with mxbai-embed-2d-large-v1 17:45 Supporting binary embeddings & quantization 19:07 Collecting large-scale data is key for robust embedding models 21:50 The importance of multilingual and multimodal models for IR 24:07 Where will mixedbread.ai be in 12 months? 26:46 Outro

  continue reading

20 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi