Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
Treść dostarczona przez Sano Genetics. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Sano Genetics lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !
Przejdź do trybu offline z Player FM !
EP 146: The biology of aging with Austin Argentieri, Research Fellow at Harvard Medical School, Affiliate Member of the Broad Institute, and Research Fellow at Massachusetts General Hospital
MP3•Źródło odcinka
Manage episode 433032371 series 2631947
Treść dostarczona przez Sano Genetics. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Sano Genetics lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
0:00 Intro to The Genetics Podcast
01:00 Welcome to Austin
01:42 What is aging and how should we think about it?
03:50 Discussion of Austin’s recent breakthrough paper on aging, including the questions he set out to answer, and the outcomes of the research
06:32 How Austin’s work focuses on using large-scale population proteomics data to create accurate estimates of biological age across diverse populations
08:10 Understanding aging in people whose protein-predicted age and chronological age diverge significantly
09:40 How a single biological estimate of proteomic age is highly predictive of all major non-cancer causes of death (within a dataset)
11:46 Validating the significance of proteomic signature in populations that are genetically and geographically distinct from the cohort on which the statistical models were trained (UK Biobank)
14:48 How not all model types are equal for estimating biological age and making generalizations from biological data across diverse populations
17:38 How far fewer than 3,000 proteins are necessary to make a prediction of biological age and how a select few are particularly significant
20:04 What is it about the 20 proteins identified by Austin’s team that make them highly predictive of biological age?
23:18 Why infamous studies searching for “fountain of youth” genes have never found any definitive answers
27:24 Why conditions associated with increased age often have high heritability, even though heritability of aging is very low
29:34 Decoding proteomic signatures for age to identify risk of developing age-related conditions
32:29 Translating this research into therapeutic development
36:51 Could protein levels associated with “decelerated” aging be replicated in someone experiencing “accelerated” aging?
39:32 How Austin became involved with the biology of aging and proteomics
42:42 What Austin and his team will be working on next
44:38 Closing remarks
Please consider rating and reviewing us on your chosen podcast listening platform!
Find out more:
Find Austin on Twitter (X)
198 odcinków
MP3•Źródło odcinka
Manage episode 433032371 series 2631947
Treść dostarczona przez Sano Genetics. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Sano Genetics lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
0:00 Intro to The Genetics Podcast
01:00 Welcome to Austin
01:42 What is aging and how should we think about it?
03:50 Discussion of Austin’s recent breakthrough paper on aging, including the questions he set out to answer, and the outcomes of the research
06:32 How Austin’s work focuses on using large-scale population proteomics data to create accurate estimates of biological age across diverse populations
08:10 Understanding aging in people whose protein-predicted age and chronological age diverge significantly
09:40 How a single biological estimate of proteomic age is highly predictive of all major non-cancer causes of death (within a dataset)
11:46 Validating the significance of proteomic signature in populations that are genetically and geographically distinct from the cohort on which the statistical models were trained (UK Biobank)
14:48 How not all model types are equal for estimating biological age and making generalizations from biological data across diverse populations
17:38 How far fewer than 3,000 proteins are necessary to make a prediction of biological age and how a select few are particularly significant
20:04 What is it about the 20 proteins identified by Austin’s team that make them highly predictive of biological age?
23:18 Why infamous studies searching for “fountain of youth” genes have never found any definitive answers
27:24 Why conditions associated with increased age often have high heritability, even though heritability of aging is very low
29:34 Decoding proteomic signatures for age to identify risk of developing age-related conditions
32:29 Translating this research into therapeutic development
36:51 Could protein levels associated with “decelerated” aging be replicated in someone experiencing “accelerated” aging?
39:32 How Austin became involved with the biology of aging and proteomics
42:42 What Austin and his team will be working on next
44:38 Closing remarks
Please consider rating and reviewing us on your chosen podcast listening platform!
Find out more:
Find Austin on Twitter (X)
198 odcinków
Kaikki jaksot
×Zapraszamy w Player FM
Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.