Artwork

Treść dostarczona przez iwashi. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez iwashi lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

107. LLMをゼロから作るということ w/ Takahiro Omi

38:22
 
Udostępnij
 

Manage episode 383875982 series 2451650
Treść dostarczona przez iwashi. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez iwashi lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

ストックマークの近江さんをゲストに、大規模言語モデルをゼロから作る方法、学習のデータセット、モデルアーキテクチャ、学習環境への取り組みなどについて語っていただきました。

話したネタ

  • どのような大規模言語モデルと作ったのか?特徴は何か?
  • データセットに何を使ったのか?
  • 日本語と英語とのバランスは?
  • 最終的なToken数は?
  • 事前学習モデルを作りたいとして、何から考えるのか?
  • ノイズのクリーニングと、その方法
  • 今回活用したモデルアーキテクチャ(Llama)
  • 前回のアーキテクチャは GPT-NeoX
  • 今回の学習環境は?
  • AWS Trainum 32コア x 16ノード
  • 学習にかかった時間は?
  • 学習時に大変だったこと・上手くいかなかったことは?
  • 学習中のチェックポイントとは何か?
  • なぜ、Token生成が速いのか?
  • 手元でLLMを動かすときの一番のネックは?
  • bit数を落とすFineTuning
  • Tokenizerとは何か?
  • 日本語の単語区切りはどのように考えるのか?
  • 今回のLLM作成のTokenizerは何を使ったのか?
  • ビジネスドメインでのLLM評価
  • ストックマーク株式会社のRecruitページ

See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.

  continue reading

127 odcinków

Artwork
iconUdostępnij
 
Manage episode 383875982 series 2451650
Treść dostarczona przez iwashi. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez iwashi lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

ストックマークの近江さんをゲストに、大規模言語モデルをゼロから作る方法、学習のデータセット、モデルアーキテクチャ、学習環境への取り組みなどについて語っていただきました。

話したネタ

  • どのような大規模言語モデルと作ったのか?特徴は何か?
  • データセットに何を使ったのか?
  • 日本語と英語とのバランスは?
  • 最終的なToken数は?
  • 事前学習モデルを作りたいとして、何から考えるのか?
  • ノイズのクリーニングと、その方法
  • 今回活用したモデルアーキテクチャ(Llama)
  • 前回のアーキテクチャは GPT-NeoX
  • 今回の学習環境は?
  • AWS Trainum 32コア x 16ノード
  • 学習にかかった時間は?
  • 学習時に大変だったこと・上手くいかなかったことは?
  • 学習中のチェックポイントとは何か?
  • なぜ、Token生成が速いのか?
  • 手元でLLMを動かすときの一番のネックは?
  • bit数を落とすFineTuning
  • Tokenizerとは何か?
  • 日本語の単語区切りはどのように考えるのか?
  • 今回のLLM作成のTokenizerは何を使ったのか?
  • ビジネスドメインでのLLM評価
  • ストックマーク株式会社のRecruitページ

See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.

  continue reading

127 odcinków

Alle afleveringen

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi

Posłuchaj tego programu podczas zwiedzania
Odtwarzanie