Artwork

Treść dostarczona przez Kai Kunze. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Kai Kunze lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Detecting an Offset-Adjusted Similarity Score based on Duchenne Smiles

8:49
 
Udostępnij
 

Manage episode 443660552 series 3605621
Treść dostarczona przez Kai Kunze. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Kai Kunze lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Detecting interpersonal synchrony in the wild through ubiquitous wearable sensing invites promising new social insights as well as the possibility of new interactions between humans-humans and humans-agents. We present the Offset-Adjusted SImilarity Score (OASIS), a real-time method of detecting similarity which we show working on visual detection of Duchenne smile between a pair of users. We conduct a user study survey (N = 27) to measure a user-based interoperability score on smile similarity and compare the user score with OASIS as well as the rolling window Pearson correlation and the Dynamic Time Warping (DTW) method. Ultimately, our results indicate that our algorithm has intrinsic qualities comparable to the user score and measures well to the statistical correlation methods. It takes the temporal offset between the input signals into account with the added benefit of being an algorithm which can be adapted to run in real-time will less computational intensity than traditional time series correlation methods.

https://dl.acm.org/doi/10.1145/3544549.3585709

  continue reading

40 odcinków

Artwork
iconUdostępnij
 
Manage episode 443660552 series 3605621
Treść dostarczona przez Kai Kunze. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Kai Kunze lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Detecting interpersonal synchrony in the wild through ubiquitous wearable sensing invites promising new social insights as well as the possibility of new interactions between humans-humans and humans-agents. We present the Offset-Adjusted SImilarity Score (OASIS), a real-time method of detecting similarity which we show working on visual detection of Duchenne smile between a pair of users. We conduct a user study survey (N = 27) to measure a user-based interoperability score on smile similarity and compare the user score with OASIS as well as the rolling window Pearson correlation and the Dynamic Time Warping (DTW) method. Ultimately, our results indicate that our algorithm has intrinsic qualities comparable to the user score and measures well to the statistical correlation methods. It takes the temporal offset between the input signals into account with the added benefit of being an algorithm which can be adapted to run in real-time will less computational intensity than traditional time series correlation methods.

https://dl.acm.org/doi/10.1145/3544549.3585709

  continue reading

40 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi

Posłuchaj tego programu podczas zwiedzania
Odtwarzanie