Artwork

Treść dostarczona przez Zeta Alpha. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Zeta Alpha lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Few-Shot Conversational Dense Retrieval (ConvDR) w/ special guest Antonios Krasakis

1:23:11
 
Udostępnij
 

Manage episode 355037187 series 3446693
Treść dostarczona przez Zeta Alpha. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Zeta Alpha lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

We discuss Conversational Search with our usual cohosts Andrew Yates and Sergi Castella i Sapé; along with a special guest Antonios Minas Krasakis, PhD candidate at the University of Amsterdam.

We center our discussion around the ConvDR paper: "Few-Shot Conversational Dense Retrieval" by Shi Yu et al. which was the first work to perform Conversational Search without an explicit conversation to query rewriting step.

Timestamps:

00:00 Introduction

00:50 Conversational AI and Conversational Search

05:40 What makes Conversational Search challenging

07:00 ConvDR paper introduction

10:10 Passage representations

11:30 Conversation representations: query rewriting

19:12 ConvDR novel proposed method: teacher-student setup with ANCE

22:50 Datasets and benchmarks: CAsT, CANARD

25:32 Teacher-student advantages and knowledge distillation vs. ranking loss functions

28:09 TREC CAsT and OR-QuAC

35:50 Metrics: MRR, NDCG, holes@10

44:16 Main Results on CAsT and OR-QuAC (Table 2)

57:35 Ablations on combinations of loss functions (Table 4)

1:00:10 How fast is ConvDR? (Table 3)

1:02:40 Qualitative analysis on ConvDR embeddings (Figure 4)

1:04:50 How has this work aged? More recent works in similar directions: Contextualized Quesy Embeddings for Conversational Search.

1:07:02 Is "end-to-end" the silver-bullet for Conversational Search?

1:10:04 Will conversational search become more mainstream?

1:18:44 Latest initiatives for Conversational Search

  continue reading

21 odcinków

Artwork
iconUdostępnij
 
Manage episode 355037187 series 3446693
Treść dostarczona przez Zeta Alpha. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Zeta Alpha lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

We discuss Conversational Search with our usual cohosts Andrew Yates and Sergi Castella i Sapé; along with a special guest Antonios Minas Krasakis, PhD candidate at the University of Amsterdam.

We center our discussion around the ConvDR paper: "Few-Shot Conversational Dense Retrieval" by Shi Yu et al. which was the first work to perform Conversational Search without an explicit conversation to query rewriting step.

Timestamps:

00:00 Introduction

00:50 Conversational AI and Conversational Search

05:40 What makes Conversational Search challenging

07:00 ConvDR paper introduction

10:10 Passage representations

11:30 Conversation representations: query rewriting

19:12 ConvDR novel proposed method: teacher-student setup with ANCE

22:50 Datasets and benchmarks: CAsT, CANARD

25:32 Teacher-student advantages and knowledge distillation vs. ranking loss functions

28:09 TREC CAsT and OR-QuAC

35:50 Metrics: MRR, NDCG, holes@10

44:16 Main Results on CAsT and OR-QuAC (Table 2)

57:35 Ablations on combinations of loss functions (Table 4)

1:00:10 How fast is ConvDR? (Table 3)

1:02:40 Qualitative analysis on ConvDR embeddings (Figure 4)

1:04:50 How has this work aged? More recent works in similar directions: Contextualized Quesy Embeddings for Conversational Search.

1:07:02 Is "end-to-end" the silver-bullet for Conversational Search?

1:10:04 Will conversational search become more mainstream?

1:18:44 Latest initiatives for Conversational Search

  continue reading

21 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi

Posłuchaj tego programu podczas zwiedzania
Odtwarzanie