Artwork

Treść dostarczona przez Zeta Alpha. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Zeta Alpha lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Shallow Pooling for Sparse Labels: the shortcomings of MS MARCO

1:07:17
 
Udostępnij
 

Manage episode 355037191 series 3446693
Treść dostarczona przez Zeta Alpha. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Zeta Alpha lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

In this first episode of Neural Information Retrieval Talks, Andrew Yates and Sergi Castellla discuss the paper "Shallow Pooling for Sparse Labels" by Negar Arabzadeh, Alexandra Vtyurina, Xinyi Yan and Charles L. A. Clarke from the University of Waterloo, Canada.

This paper puts the spotlight on the popular IR benchmark MS MARCO and investigates whether modern neural retrieval models retrieve documents that are even more relevant than the original top relevance annotations. The results have important implications and raise the question of to what degree this benchmark is still an informative north star to follow.

Contact: castella@zeta-alpha.com

Timestamps:

00:00 — Introduction.

01:52 — Overview and motivation of the paper.

04:00 — Origins of MS MARCO.

07:30 — Modern approaches to IR: keyword-based, dense retrieval, rerankers and learned sparse representations.

13:40 — What is "better than perfect" performance on MS MARCO?

17:15 — Results and discussion: how often are neural rankers preferred over original annotations on MS MARCO? How should we interpret these results?

26:55 — The authors' proposal to "fix" MS MARCO: shallow pooling

32:40 — How does TREC Deep Learning compare?

38:30 — How do models compare after re-annotating MS MARCO passages?

45:00 — Figure 5 audio description.

47:00 — Discussion on models' performance after re-annotations.

51:50 — Exciting directions in the space of IR benchmarking.

1:06:20 — Outro.

Related material:

- Leo Boystov paper critique blog post: http://searchivarius.org/blog/ir-leaderboards-never-tell-full-story-they-are-still-useful-and-what-can-be-done-make-them-even

- "MS MARCO Chameleons: Challenging the MS MARCO Leaderboard with Extremely Obstinate Queries" https://dl.acm.org/doi/abs/10.1145/3459637.3482011

  continue reading

21 odcinków

Artwork
iconUdostępnij
 
Manage episode 355037191 series 3446693
Treść dostarczona przez Zeta Alpha. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Zeta Alpha lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

In this first episode of Neural Information Retrieval Talks, Andrew Yates and Sergi Castellla discuss the paper "Shallow Pooling for Sparse Labels" by Negar Arabzadeh, Alexandra Vtyurina, Xinyi Yan and Charles L. A. Clarke from the University of Waterloo, Canada.

This paper puts the spotlight on the popular IR benchmark MS MARCO and investigates whether modern neural retrieval models retrieve documents that are even more relevant than the original top relevance annotations. The results have important implications and raise the question of to what degree this benchmark is still an informative north star to follow.

Contact: castella@zeta-alpha.com

Timestamps:

00:00 — Introduction.

01:52 — Overview and motivation of the paper.

04:00 — Origins of MS MARCO.

07:30 — Modern approaches to IR: keyword-based, dense retrieval, rerankers and learned sparse representations.

13:40 — What is "better than perfect" performance on MS MARCO?

17:15 — Results and discussion: how often are neural rankers preferred over original annotations on MS MARCO? How should we interpret these results?

26:55 — The authors' proposal to "fix" MS MARCO: shallow pooling

32:40 — How does TREC Deep Learning compare?

38:30 — How do models compare after re-annotating MS MARCO passages?

45:00 — Figure 5 audio description.

47:00 — Discussion on models' performance after re-annotations.

51:50 — Exciting directions in the space of IR benchmarking.

1:06:20 — Outro.

Related material:

- Leo Boystov paper critique blog post: http://searchivarius.org/blog/ir-leaderboards-never-tell-full-story-they-are-still-useful-and-what-can-be-done-make-them-even

- "MS MARCO Chameleons: Challenging the MS MARCO Leaderboard with Extremely Obstinate Queries" https://dl.acm.org/doi/abs/10.1145/3459637.3482011

  continue reading

21 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi

Posłuchaj tego programu podczas zwiedzania
Odtwarzanie