Artwork

Treść dostarczona przez Brian Carter. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Brian Carter lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Do we Need the Mamba Mindset when LLMs Fail? MoE Mamba and SSMs

11:57
 
Udostępnij
 

Manage episode 447723509 series 3605861
Treść dostarczona przez Brian Carter. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Brian Carter lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

The research paper "MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts" explores a novel approach to language modeling by combining State Space Models (SSMs), which offer linear-time inference and strong performance in long-context tasks, with Mixture of Experts (MoE), a technique that scales model parameters while minimizing computational demands. The authors introduce MoE-Mamba, a model that interleaves Mamba, a recent SSM-based model, with MoE layers, resulting in significant performance gains and training efficiency. They demonstrate that MoE-Mamba outperforms both Mamba and standard Transformer-MoE architectures. The paper also explores different design choices for integrating MoE within Mamba, showcasing promising directions for future research in scaling language models beyond tens of billions of parameters.

Read it: https://arxiv.org/abs/2401.04081

  continue reading

65 odcinków

Artwork
iconUdostępnij
 
Manage episode 447723509 series 3605861
Treść dostarczona przez Brian Carter. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Brian Carter lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

The research paper "MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts" explores a novel approach to language modeling by combining State Space Models (SSMs), which offer linear-time inference and strong performance in long-context tasks, with Mixture of Experts (MoE), a technique that scales model parameters while minimizing computational demands. The authors introduce MoE-Mamba, a model that interleaves Mamba, a recent SSM-based model, with MoE layers, resulting in significant performance gains and training efficiency. They demonstrate that MoE-Mamba outperforms both Mamba and standard Transformer-MoE architectures. The paper also explores different design choices for integrating MoE within Mamba, showcasing promising directions for future research in scaling language models beyond tens of billions of parameters.

Read it: https://arxiv.org/abs/2401.04081

  continue reading

65 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi