Artwork

Treść dostarczona przez Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Next-Gen Data Modeling, Integrity, and Governance with YODA

55:55
 
Udostępnij
 

Manage episode 357219000 series 2355972
Treść dostarczona przez Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

In this episode, Kris interviews Doron Porat, Director of Infrastructure at Yotpo, and Liran Yogev, Director of Engineering at ZipRecruiter (formerly at Yotpo), about their experiences and strategies in dealing with data modeling at scale.
Yotpo has a vast and active data lake, comprising thousands of datasets that are processed by different engines, primarily Apache Spark™. They wanted to provide users with self-service tools for generating and utilizing data with maximum flexibility, but encountered difficulties, including poor standardization, low data reusability, limited data lineage, and unreliable datasets.
The team realized that Yotpo's modeling layer, which defines the structure and relationships of the data, needed to be separated from the execution layer, which defines and processes operations on the data.
This separation would give programmers better visibility into data pipelines across all execution engines, storage methods, and formats, as well as more governance control for exploration and automation.
To address these issues, they developed YODA, an internal tool that combines excellent developer experience, DBT, Databricks, Airflow, Looker and more, with a strong CI/CD and orchestration layer.
Yotpo is a B2B, SaaS e-commerce marketing platform that provides businesses with the necessary tools for accurate customer analytics, remarketing, support messaging, and more.
ZipRecruiter is a job site that utilizes AI matching to help businesses find the right candidates for their open roles.
EPISODE LINKS

  continue reading

Rozdziały

1. Intro (00:00:00)

2. What is Yotpo? (00:02:29)

3. Building an ETL framework based on Spark (00:05:25)

4. What is Apache Spark? (00:10:18)

5. Decoupling the data model (00:15:40)

6. Using data mesh principles (00:18:51)

7. How to address different data personas (00:22:24)

8. What is the "shift left" movement? (00:26:35)

9. How can organizations change the way they treat their data? (00:28:47)

10. Use-cases for tooling and documenting data sets (00:31:01)

11. Schema vs. schema-less (00:32:07)

12. What is YODA? (00:40:07)

13. Takeaways from the conversation with Doron and Liran (00:48:35)

14. It's a wrap! (00:52:45)

265 odcinków

Artwork
iconUdostępnij
 
Manage episode 357219000 series 2355972
Treść dostarczona przez Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

In this episode, Kris interviews Doron Porat, Director of Infrastructure at Yotpo, and Liran Yogev, Director of Engineering at ZipRecruiter (formerly at Yotpo), about their experiences and strategies in dealing with data modeling at scale.
Yotpo has a vast and active data lake, comprising thousands of datasets that are processed by different engines, primarily Apache Spark™. They wanted to provide users with self-service tools for generating and utilizing data with maximum flexibility, but encountered difficulties, including poor standardization, low data reusability, limited data lineage, and unreliable datasets.
The team realized that Yotpo's modeling layer, which defines the structure and relationships of the data, needed to be separated from the execution layer, which defines and processes operations on the data.
This separation would give programmers better visibility into data pipelines across all execution engines, storage methods, and formats, as well as more governance control for exploration and automation.
To address these issues, they developed YODA, an internal tool that combines excellent developer experience, DBT, Databricks, Airflow, Looker and more, with a strong CI/CD and orchestration layer.
Yotpo is a B2B, SaaS e-commerce marketing platform that provides businesses with the necessary tools for accurate customer analytics, remarketing, support messaging, and more.
ZipRecruiter is a job site that utilizes AI matching to help businesses find the right candidates for their open roles.
EPISODE LINKS

  continue reading

Rozdziały

1. Intro (00:00:00)

2. What is Yotpo? (00:02:29)

3. Building an ETL framework based on Spark (00:05:25)

4. What is Apache Spark? (00:10:18)

5. Decoupling the data model (00:15:40)

6. Using data mesh principles (00:18:51)

7. How to address different data personas (00:22:24)

8. What is the "shift left" movement? (00:26:35)

9. How can organizations change the way they treat their data? (00:28:47)

10. Use-cases for tooling and documenting data sets (00:31:01)

11. Schema vs. schema-less (00:32:07)

12. What is YODA? (00:40:07)

13. Takeaways from the conversation with Doron and Liran (00:48:35)

14. It's a wrap! (00:52:45)

265 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi