Artwork

Treść dostarczona przez The Data Flowcast. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez The Data Flowcast lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Embracing Data Mesh and SQL Sensors for Scalable Workflows at lastminute.com with Alberto Crespi

30:09
 
Udostępnij
 

Manage episode 489814387 series 2053958
Treść dostarczona przez The Data Flowcast. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez The Data Flowcast lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

The flexibility of Airflow plays a pivotal role in enabling decentralized data architectures and empowering cross-functional teams.

In this episode, we speak with Alberto Crespi, Data Architect at lastminute.com, who shares how his team scales Airflow across 12 teams while supporting both vertical and horizontal structures under a data mesh approach.

Key Takeaways:

(02:17) Defining responsibilities within data architecture teams.

(04:15) Consolidating multiple orchestrators into a single solution.

(07:00) Scaling Airflow environments with shared infrastructure and DevOps practices.

(10:59) Managing dependencies and readiness using SQL sensors.

(14:23) Enhancing visibility and response through Slack-integrated monitoring.

(19:28) Extending Airflow’s flexibility to run legacy systems.

(22:28) Integrating transformation tools into orchestrated pipelines.

(25:54) Enabling non-engineers to contribute to pipeline development.

(27:33) Fostering adoption through collaboration and communication.

Resources Mentioned:

Alberto Crespi

https://www.linkedin.com/in/crespialberto/

lastminute.com | Website

https://lastminute.com

Apache Airflow

https://airflow.apache.org/

dbt Labs

https://www.getdbt.com/

Astronomer Cosmos

https://github.com/astronomer/astronomer-cosmos

GitLabSlack

https://slack.com/

Kubernetes

https://kubernetes.io/

Confluence

https://www.atlassian.com/software/confluence

Slack

https://slack.com/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 odcinków

Artwork
iconUdostępnij
 
Manage episode 489814387 series 2053958
Treść dostarczona przez The Data Flowcast. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez The Data Flowcast lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

The flexibility of Airflow plays a pivotal role in enabling decentralized data architectures and empowering cross-functional teams.

In this episode, we speak with Alberto Crespi, Data Architect at lastminute.com, who shares how his team scales Airflow across 12 teams while supporting both vertical and horizontal structures under a data mesh approach.

Key Takeaways:

(02:17) Defining responsibilities within data architecture teams.

(04:15) Consolidating multiple orchestrators into a single solution.

(07:00) Scaling Airflow environments with shared infrastructure and DevOps practices.

(10:59) Managing dependencies and readiness using SQL sensors.

(14:23) Enhancing visibility and response through Slack-integrated monitoring.

(19:28) Extending Airflow’s flexibility to run legacy systems.

(22:28) Integrating transformation tools into orchestrated pipelines.

(25:54) Enabling non-engineers to contribute to pipeline development.

(27:33) Fostering adoption through collaboration and communication.

Resources Mentioned:

Alberto Crespi

https://www.linkedin.com/in/crespialberto/

lastminute.com | Website

https://lastminute.com

Apache Airflow

https://airflow.apache.org/

dbt Labs

https://www.getdbt.com/

Astronomer Cosmos

https://github.com/astronomer/astronomer-cosmos

GitLabSlack

https://slack.com/

Kubernetes

https://kubernetes.io/

Confluence

https://www.atlassian.com/software/confluence

Slack

https://slack.com/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi

Posłuchaj tego programu podczas zwiedzania
Odtwarzanie