The Role of Kemeny's Constant in Properties of Markov Chains
Manage episode 155956009 series 1172274
Treść dostarczona przez Hamilton Institute. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Hamilton Institute lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Speaker: Prof. J. J. Hunter Abstract: In a finite m-state irreducible Markov chain with stationary probabilities {\pi_i} and mean first passage times m_{ij} (mean recurrence time when i=j) it was first shown, by Kemeny and Snell, that \sum_{j=1}^{m}\pi_jm_{ij} is a constant, K, not depending on i. This constant has since become known as Kemeny’s constant. We consider a variety of techniques for finding expressions for K, derive some bounds for K, and explore various applications and interpretations of theseresults. Interpretations include the expected number of links that a surfer on the World Wide Web located on a random page needs to follow before reaching a desired location, as well as the expected time to mixing in a Markov chain. Various applications have been considered including some perturbation results, mixing on directed graphs and its relation to the Kirchhoff index of regular graphs.
…
continue reading
63 odcinków