Artwork

Treść dostarczona przez Barbara Bredner. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Barbara Bredner lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

#46 Wie gut funktionieren Machine Learning Modelle

25:55
 
Udostępnij
 

Manage episode 323574536 series 2924427
Treść dostarczona przez Barbara Bredner. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Barbara Bredner lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Kennzahlen für die Modell-Quaität bei messbaren Zielgrößen (Regression)

Wie gut funktionieren Machine Learning Modelle?

👉 Welche Qualitäts-Kriterien gibt es für Machine Learning?
👉 Wie wird Erklär-Qualität bei der Regression bewertet?
👉 Wann ist die Anpassungsgüte R² groß genug?

Ein Modell mit Methoden des maschinellen Lernens wie z. B. Regression oder Klassifikation zu bauen ist einfach. Solche Modelle können uns beispielsweise optimale Arbeitspunkte liefern oder dabei helfen nachzuweisen, dass die Anforderungen in einem bestimmten Prozessfenster erfüllt werden.

Bevor ein Modell produktiv genutzt wird, sollten Sie zuerst prüfen, ob das Modell gut genug ist. In dieser Folge erhalten Sie Informationen dazu, welche Kenngrößen für die Modell- bzw. Erklär-Qualität genutzt werden und warum die beliebteste Kennzahl, die Anpassungsgüte R², allein zu wenig ist. Alternative Kennzahlen wie die Prognosegüte liefern weitere wichtige Erkenntnisse über die Qualität des ML Modells.

Links

👉 Barbara Bredner (2021) "NOT Statistik. Nachweise führen, Optimierungen finden, Toleranzen berechnen mit Minitab und R"
👉 Anber Arif: Cross Validation in Machine Learning
👉 Shervine Amidi: Machine Learning tips and tricks cheatsheet
👉 Adi Bronshtein: Train/Test Split and Cross Validation in Python

Schreiben Sie mir!

Ich freue mich über Ihre Nachricht! Barbara Bredner, [email protected]

  continue reading

51 odcinków

Artwork
iconUdostępnij
 
Manage episode 323574536 series 2924427
Treść dostarczona przez Barbara Bredner. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Barbara Bredner lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Kennzahlen für die Modell-Quaität bei messbaren Zielgrößen (Regression)

Wie gut funktionieren Machine Learning Modelle?

👉 Welche Qualitäts-Kriterien gibt es für Machine Learning?
👉 Wie wird Erklär-Qualität bei der Regression bewertet?
👉 Wann ist die Anpassungsgüte R² groß genug?

Ein Modell mit Methoden des maschinellen Lernens wie z. B. Regression oder Klassifikation zu bauen ist einfach. Solche Modelle können uns beispielsweise optimale Arbeitspunkte liefern oder dabei helfen nachzuweisen, dass die Anforderungen in einem bestimmten Prozessfenster erfüllt werden.

Bevor ein Modell produktiv genutzt wird, sollten Sie zuerst prüfen, ob das Modell gut genug ist. In dieser Folge erhalten Sie Informationen dazu, welche Kenngrößen für die Modell- bzw. Erklär-Qualität genutzt werden und warum die beliebteste Kennzahl, die Anpassungsgüte R², allein zu wenig ist. Alternative Kennzahlen wie die Prognosegüte liefern weitere wichtige Erkenntnisse über die Qualität des ML Modells.

Links

👉 Barbara Bredner (2021) "NOT Statistik. Nachweise führen, Optimierungen finden, Toleranzen berechnen mit Minitab und R"
👉 Anber Arif: Cross Validation in Machine Learning
👉 Shervine Amidi: Machine Learning tips and tricks cheatsheet
👉 Adi Bronshtein: Train/Test Split and Cross Validation in Python

Schreiben Sie mir!

Ich freue mich über Ihre Nachricht! Barbara Bredner, [email protected]

  continue reading

51 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi

Posłuchaj tego programu podczas zwiedzania
Odtwarzanie