Artwork

Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Open-Ended AI: The Key to Superhuman Intelligence? - Prof. Tim Rocktäschel

55:10
 
Udostępnij
 

Manage episode 443591080 series 2803422
Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Prof. Tim Rocktäschel, AI researcher at UCL and Google DeepMind, talks about open-ended AI systems. These systems aim to keep learning and improving on their own, like evolution does in nature.

Ad: Are you a hardcore ML engineer who wants to work for Daniel Cahn at SlingshotAI building AI for mental health? Give him an email! - danielc@slingshot.xyz

TOC:

00:00:00 Introduction to Open-Ended AI and Key Concepts

00:01:37 Tim Rocktäschel's Background and Research Focus

00:06:25 Defining Open-Endedness in AI Systems

00:10:39 Subjective Nature of Interestingness and Learnability

00:16:22 Open-Endedness in Practice: Examples and Limitations

00:17:50 Assessing Novelty in Open-ended AI Systems

00:20:05 Adversarial Attacks and AI Robustness

00:24:05 Rainbow Teaming and LLM Safety

00:25:48 Open-ended Research Approaches in AI

00:29:05 Balancing Long-term Vision and Exploration in AI Research

00:37:25 LLMs in Program Synthesis and Open-Ended Learning

00:37:55 Transition from Human-Based to Novel AI Strategies

00:39:00 Expanding Context Windows and Prompt Evolution

00:40:17 AI Intelligibility and Human-AI Interfaces

00:46:04 Self-Improvement and Evolution in AI Systems

Show notes (New!) https://www.dropbox.com/scl/fi/5avpsyz8jbn4j1az7kevs/TimR.pdf?rlkey=pqjlcqbtm3undp4udtgfmie8n&st=x50u1d1m&dl=0

REFS:

00:01:47 - UCL DARK Lab (Rocktäschel) - AI research lab focusing on RL and open-ended learning - https://ucldark.com/

00:02:31 - GENIE (Bruce) - Generative interactive environment from unlabelled videos - https://arxiv.org/abs/2402.15391

00:02:42 - Promptbreeder (Fernando) - Self-referential LLM prompt evolution - https://arxiv.org/abs/2309.16797

00:03:05 - Picbreeder (Secretan) - Collaborative online image evolution - https://dl.acm.org/doi/10.1145/1357054.1357328

00:03:14 - Why Greatness Cannot Be Planned (Stanley) - Book on open-ended exploration - https://www.amazon.com/Why-Greatness-Cannot-Planned-Objective/dp/3319155237

00:04:36 - NetHack Learning Environment (Küttler) - RL research in procedurally generated game - https://arxiv.org/abs/2006.13760

00:07:35 - Open-ended learning (Clune) - AI systems for continual learning and adaptation - https://arxiv.org/abs/1905.10985

00:07:35 - OMNI (Zhang) - LLMs modeling human interestingness for exploration - https://arxiv.org/abs/2306.01711

00:10:42 - Observer theory (Wolfram) - Computationally bounded observers in complex systems - https://writings.stephenwolfram.com/2023/12/observer-theory/

00:15:25 - Human-Timescale Adaptation (Rocktäschel) - RL agent adapting to novel 3D tasks - https://arxiv.org/abs/2301.07608

00:16:15 - Open-Endedness for AGI (Hughes) - Importance of open-ended learning for AGI - https://arxiv.org/abs/2406.04268

00:16:35 - POET algorithm (Wang) - Open-ended approach to generate and solve challenges - https://arxiv.org/abs/1901.01753

00:17:20 - AlphaGo (Silver) - AI mastering the game of Go - https://deepmind.google/technologies/alphago/

00:20:35 - Adversarial Go attacks (Dennis) - Exploiting weaknesses in Go AI systems - https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p1630.pdf

00:22:00 - Levels of AGI (Morris) - Framework for categorizing AGI progress - https://arxiv.org/abs/2311.02462

00:24:30 - Rainbow Teaming (Samvelyan) - LLM-based adversarial prompt generation - https://arxiv.org/abs/2402.16822

00:25:50 - Why Greatness Cannot Be Planned (Stanley) - 'False compass' and 'stepping stone collection' concepts - https://www.amazon.com/Why-Greatness-Cannot-Planned-Objective/dp/3319155237

00:27:45 - AI Debate (Khan) - Improving LLM truthfulness through debate - https://proceedings.mlr.press/v235/khan24a.html

00:29:40 - Gemini (Google DeepMind) - Advanced multimodal AI model - https://deepmind.google/technologies/gemini/

00:30:15 - How to Take Smart Notes (Ahrens) - Effective note-taking methodology - https://www.amazon.com/How-Take-Smart-Notes-Nonfiction/dp/1542866502

(truncated, see shownotes)

  continue reading

190 odcinków

Artwork
iconUdostępnij
 
Manage episode 443591080 series 2803422
Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Prof. Tim Rocktäschel, AI researcher at UCL and Google DeepMind, talks about open-ended AI systems. These systems aim to keep learning and improving on their own, like evolution does in nature.

Ad: Are you a hardcore ML engineer who wants to work for Daniel Cahn at SlingshotAI building AI for mental health? Give him an email! - danielc@slingshot.xyz

TOC:

00:00:00 Introduction to Open-Ended AI and Key Concepts

00:01:37 Tim Rocktäschel's Background and Research Focus

00:06:25 Defining Open-Endedness in AI Systems

00:10:39 Subjective Nature of Interestingness and Learnability

00:16:22 Open-Endedness in Practice: Examples and Limitations

00:17:50 Assessing Novelty in Open-ended AI Systems

00:20:05 Adversarial Attacks and AI Robustness

00:24:05 Rainbow Teaming and LLM Safety

00:25:48 Open-ended Research Approaches in AI

00:29:05 Balancing Long-term Vision and Exploration in AI Research

00:37:25 LLMs in Program Synthesis and Open-Ended Learning

00:37:55 Transition from Human-Based to Novel AI Strategies

00:39:00 Expanding Context Windows and Prompt Evolution

00:40:17 AI Intelligibility and Human-AI Interfaces

00:46:04 Self-Improvement and Evolution in AI Systems

Show notes (New!) https://www.dropbox.com/scl/fi/5avpsyz8jbn4j1az7kevs/TimR.pdf?rlkey=pqjlcqbtm3undp4udtgfmie8n&st=x50u1d1m&dl=0

REFS:

00:01:47 - UCL DARK Lab (Rocktäschel) - AI research lab focusing on RL and open-ended learning - https://ucldark.com/

00:02:31 - GENIE (Bruce) - Generative interactive environment from unlabelled videos - https://arxiv.org/abs/2402.15391

00:02:42 - Promptbreeder (Fernando) - Self-referential LLM prompt evolution - https://arxiv.org/abs/2309.16797

00:03:05 - Picbreeder (Secretan) - Collaborative online image evolution - https://dl.acm.org/doi/10.1145/1357054.1357328

00:03:14 - Why Greatness Cannot Be Planned (Stanley) - Book on open-ended exploration - https://www.amazon.com/Why-Greatness-Cannot-Planned-Objective/dp/3319155237

00:04:36 - NetHack Learning Environment (Küttler) - RL research in procedurally generated game - https://arxiv.org/abs/2006.13760

00:07:35 - Open-ended learning (Clune) - AI systems for continual learning and adaptation - https://arxiv.org/abs/1905.10985

00:07:35 - OMNI (Zhang) - LLMs modeling human interestingness for exploration - https://arxiv.org/abs/2306.01711

00:10:42 - Observer theory (Wolfram) - Computationally bounded observers in complex systems - https://writings.stephenwolfram.com/2023/12/observer-theory/

00:15:25 - Human-Timescale Adaptation (Rocktäschel) - RL agent adapting to novel 3D tasks - https://arxiv.org/abs/2301.07608

00:16:15 - Open-Endedness for AGI (Hughes) - Importance of open-ended learning for AGI - https://arxiv.org/abs/2406.04268

00:16:35 - POET algorithm (Wang) - Open-ended approach to generate and solve challenges - https://arxiv.org/abs/1901.01753

00:17:20 - AlphaGo (Silver) - AI mastering the game of Go - https://deepmind.google/technologies/alphago/

00:20:35 - Adversarial Go attacks (Dennis) - Exploiting weaknesses in Go AI systems - https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p1630.pdf

00:22:00 - Levels of AGI (Morris) - Framework for categorizing AGI progress - https://arxiv.org/abs/2311.02462

00:24:30 - Rainbow Teaming (Samvelyan) - LLM-based adversarial prompt generation - https://arxiv.org/abs/2402.16822

00:25:50 - Why Greatness Cannot Be Planned (Stanley) - 'False compass' and 'stepping stone collection' concepts - https://www.amazon.com/Why-Greatness-Cannot-Planned-Objective/dp/3319155237

00:27:45 - AI Debate (Khan) - Improving LLM truthfulness through debate - https://proceedings.mlr.press/v235/khan24a.html

00:29:40 - Gemini (Google DeepMind) - Advanced multimodal AI model - https://deepmind.google/technologies/gemini/

00:30:15 - How to Take Smart Notes (Ahrens) - Effective note-taking methodology - https://www.amazon.com/How-Take-Smart-Notes-Nonfiction/dp/1542866502

(truncated, see shownotes)

  continue reading

190 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi