Artwork

Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Patrick Lewis (Cohere) - Retrieval Augmented Generation

1:13:46
 
Udostępnij
 

Manage episode 440266070 series 2803422
Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Dr. Patrick Lewis, who coined the term RAG (Retrieval Augmented Generation) and now works at Cohere, discusses the evolution of language models, RAG systems, and challenges in AI evaluation.

MLST is sponsored by Brave:

The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmented generation. Try it now - get 2,000 free queries monthly at http://brave.com/api.

Key topics covered:

- Origins and evolution of Retrieval Augmented Generation (RAG)

- Challenges in evaluating RAG systems and language models

- Human-AI collaboration in research and knowledge work

- Word embeddings and the progression to modern language models

- Dense vs sparse retrieval methods in information retrieval

The discussion also explored broader implications and applications:

- Balancing faithfulness and fluency in RAG systems

- User interface design for AI-augmented research tools

- The journey from chemistry to AI research

- Challenges in enterprise search compared to web search

- The importance of data quality in training AI models

Patrick Lewis: https://www.patricklewis.io/

Cohere Command Models, check them out - they are amazing for RAG!

https://cohere.com/command

TOC

00:00:00 1. Intro to RAG

00:05:30 2. RAG Evaluation: Poll framework & model performance

00:12:55 3. Data Quality: Cleanliness vs scale in AI training

00:15:13 4. Human-AI Collaboration: Research agents & UI design

00:22:57 5. RAG Origins: Open-domain QA to generative models

00:30:18 6. RAG Challenges: Info retrieval, tool use, faithfulness

00:42:01 7. Dense vs Sparse Retrieval: Techniques & trade-offs

00:47:02 8. RAG Applications: Grounding, attribution, hallucination prevention

00:54:04 9. UI for RAG: Human-computer interaction & model optimization

00:59:01 10. Word Embeddings: Word2Vec, GloVe, and semantic spaces

01:06:43 11. Language Model Evolution: BERT, GPT, and beyond

01:11:38 12. AI & Human Cognition: Sequential processing & chain-of-thought

Refs:

1. Retrieval Augmented Generation (RAG) paper / Patrick Lewis et al. [00:27:45]

https://arxiv.org/abs/2005.11401

2. LAMA (LAnguage Model Analysis) probe / Petroni et al. [00:26:35]

https://arxiv.org/abs/1909.01066

3. KILT (Knowledge Intensive Language Tasks) benchmark / Petroni et al. [00:27:05]

https://arxiv.org/abs/2009.02252

4. Word2Vec algorithm / Tomas Mikolov et al. [01:00:25]

https://arxiv.org/abs/1301.3781

5. GloVe (Global Vectors for Word Representation) / Pennington et al. [01:04:35]

https://nlp.stanford.edu/projects/glove/

6. BERT (Bidirectional Encoder Representations from Transformers) / Devlin et al. [01:08:00]

https://arxiv.org/abs/1810.04805

7. 'The Language Game' book / Nick Chater and Morten H. Christiansen [01:11:40]

https://amzn.to/4grEUpG

Disclaimer: This is the sixth video from our Cohere partnership. We were not told what to say in the interview. Filmed in Seattle in June 2024.

  continue reading

199 odcinków

Artwork
iconUdostępnij
 
Manage episode 440266070 series 2803422
Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Dr. Patrick Lewis, who coined the term RAG (Retrieval Augmented Generation) and now works at Cohere, discusses the evolution of language models, RAG systems, and challenges in AI evaluation.

MLST is sponsored by Brave:

The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmented generation. Try it now - get 2,000 free queries monthly at http://brave.com/api.

Key topics covered:

- Origins and evolution of Retrieval Augmented Generation (RAG)

- Challenges in evaluating RAG systems and language models

- Human-AI collaboration in research and knowledge work

- Word embeddings and the progression to modern language models

- Dense vs sparse retrieval methods in information retrieval

The discussion also explored broader implications and applications:

- Balancing faithfulness and fluency in RAG systems

- User interface design for AI-augmented research tools

- The journey from chemistry to AI research

- Challenges in enterprise search compared to web search

- The importance of data quality in training AI models

Patrick Lewis: https://www.patricklewis.io/

Cohere Command Models, check them out - they are amazing for RAG!

https://cohere.com/command

TOC

00:00:00 1. Intro to RAG

00:05:30 2. RAG Evaluation: Poll framework & model performance

00:12:55 3. Data Quality: Cleanliness vs scale in AI training

00:15:13 4. Human-AI Collaboration: Research agents & UI design

00:22:57 5. RAG Origins: Open-domain QA to generative models

00:30:18 6. RAG Challenges: Info retrieval, tool use, faithfulness

00:42:01 7. Dense vs Sparse Retrieval: Techniques & trade-offs

00:47:02 8. RAG Applications: Grounding, attribution, hallucination prevention

00:54:04 9. UI for RAG: Human-computer interaction & model optimization

00:59:01 10. Word Embeddings: Word2Vec, GloVe, and semantic spaces

01:06:43 11. Language Model Evolution: BERT, GPT, and beyond

01:11:38 12. AI & Human Cognition: Sequential processing & chain-of-thought

Refs:

1. Retrieval Augmented Generation (RAG) paper / Patrick Lewis et al. [00:27:45]

https://arxiv.org/abs/2005.11401

2. LAMA (LAnguage Model Analysis) probe / Petroni et al. [00:26:35]

https://arxiv.org/abs/1909.01066

3. KILT (Knowledge Intensive Language Tasks) benchmark / Petroni et al. [00:27:05]

https://arxiv.org/abs/2009.02252

4. Word2Vec algorithm / Tomas Mikolov et al. [01:00:25]

https://arxiv.org/abs/1301.3781

5. GloVe (Global Vectors for Word Representation) / Pennington et al. [01:04:35]

https://nlp.stanford.edu/projects/glove/

6. BERT (Bidirectional Encoder Representations from Transformers) / Devlin et al. [01:08:00]

https://arxiv.org/abs/1810.04805

7. 'The Language Game' book / Nick Chater and Morten H. Christiansen [01:11:40]

https://amzn.to/4grEUpG

Disclaimer: This is the sixth video from our Cohere partnership. We were not told what to say in the interview. Filmed in Seattle in June 2024.

  continue reading

199 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi

Posłuchaj tego programu podczas zwiedzania
Odtwarzanie