Artwork

Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Pattern Recognition vs True Intelligence - Francois Chollet

2:42:54
 
Udostępnij
 

Manage episode 448854919 series 2803422
Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Francois Chollet, a prominent AI expert and creator of ARC-AGI, discusses intelligence, consciousness, and artificial intelligence.

Chollet explains that real intelligence isn't about memorizing information or having lots of knowledge - it's about being able to handle new situations effectively. This is why he believes current large language models (LLMs) have "near-zero intelligence" despite their impressive abilities. They're more like sophisticated memory and pattern-matching systems than truly intelligent beings.

***

MLST IS SPONSORED BY TUFA AI LABS!

The current winners of the ARC challenge, MindsAI are part of Tufa AI Labs. They are hiring ML engineers. Are you interested?! Please goto https://tufalabs.ai/

***

He introduced his "Kaleidoscope Hypothesis," which suggests that while the world seems infinitely complex, it's actually made up of simpler patterns that repeat and combine in different ways. True intelligence, he argues, involves identifying these basic patterns and using them to understand new situations.

Chollet also talked about consciousness, suggesting it develops gradually in children rather than appearing all at once. He believes consciousness exists in degrees - animals have it to some extent, and even human consciousness varies with age and circumstances (like being more conscious when learning something new versus doing routine tasks).

On AI safety, Chollet takes a notably different stance from many in Silicon Valley. He views AGI development as a scientific challenge rather than a religious quest, and doesn't share the apocalyptic concerns of some AI researchers. He argues that intelligence itself isn't dangerous - it's just a tool for turning information into useful models. What matters is how we choose to use it.

ARC-AGI Prize:

https://arcprize.org/

Francois Chollet:

https://x.com/fchollet

Shownotes:

https://www.dropbox.com/scl/fi/j2068j3hlj8br96pfa7bi/CHOLLET_FINAL.pdf?rlkey=xkbr7tbnrjdl66m246w26uc8k&st=0a4ec4na&dl=0

TOC:

1. Intelligence and Model Building

[00:00:00] 1.1 Intelligence Definition and ARC Benchmark

[00:05:40] 1.2 LLMs as Program Memorization Systems

[00:09:36] 1.3 Kaleidoscope Hypothesis and Abstract Building Blocks

[00:13:39] 1.4 Deep Learning Limitations and System 2 Reasoning

[00:29:38] 1.5 Intelligence vs. Skill in LLMs and Model Building

2. ARC Benchmark and Program Synthesis

[00:37:36] 2.1 Intelligence Definition and LLM Limitations

[00:41:33] 2.2 Meta-Learning System Architecture

[00:56:21] 2.3 Program Search and Occam's Razor

[00:59:42] 2.4 Developer-Aware Generalization

[01:06:49] 2.5 Task Generation and Benchmark Design

3. Cognitive Systems and Program Generation

[01:14:38] 3.1 System 1/2 Thinking Fundamentals

[01:22:17] 3.2 Program Synthesis and Combinatorial Challenges

[01:31:18] 3.3 Test-Time Fine-Tuning Strategies

[01:36:10] 3.4 Evaluation and Leakage Problems

[01:43:22] 3.5 ARC Implementation Approaches

4. Intelligence and Language Systems

[01:50:06] 4.1 Intelligence as Tool vs Agent

[01:53:53] 4.2 Cultural Knowledge Integration

[01:58:42] 4.3 Language and Abstraction Generation

[02:02:41] 4.4 Embodiment in Cognitive Systems

[02:09:02] 4.5 Language as Cognitive Operating System

5. Consciousness and AI Safety

[02:14:05] 5.1 Consciousness and Intelligence Relationship

[02:20:25] 5.2 Development of Machine Consciousness

[02:28:40] 5.3 Consciousness Prerequisites and Indicators

[02:36:36] 5.4 AGI Safety Considerations

[02:40:29] 5.5 AI Regulation Framework

  continue reading

199 odcinków

Artwork
iconUdostępnij
 
Manage episode 448854919 series 2803422
Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Francois Chollet, a prominent AI expert and creator of ARC-AGI, discusses intelligence, consciousness, and artificial intelligence.

Chollet explains that real intelligence isn't about memorizing information or having lots of knowledge - it's about being able to handle new situations effectively. This is why he believes current large language models (LLMs) have "near-zero intelligence" despite their impressive abilities. They're more like sophisticated memory and pattern-matching systems than truly intelligent beings.

***

MLST IS SPONSORED BY TUFA AI LABS!

The current winners of the ARC challenge, MindsAI are part of Tufa AI Labs. They are hiring ML engineers. Are you interested?! Please goto https://tufalabs.ai/

***

He introduced his "Kaleidoscope Hypothesis," which suggests that while the world seems infinitely complex, it's actually made up of simpler patterns that repeat and combine in different ways. True intelligence, he argues, involves identifying these basic patterns and using them to understand new situations.

Chollet also talked about consciousness, suggesting it develops gradually in children rather than appearing all at once. He believes consciousness exists in degrees - animals have it to some extent, and even human consciousness varies with age and circumstances (like being more conscious when learning something new versus doing routine tasks).

On AI safety, Chollet takes a notably different stance from many in Silicon Valley. He views AGI development as a scientific challenge rather than a religious quest, and doesn't share the apocalyptic concerns of some AI researchers. He argues that intelligence itself isn't dangerous - it's just a tool for turning information into useful models. What matters is how we choose to use it.

ARC-AGI Prize:

https://arcprize.org/

Francois Chollet:

https://x.com/fchollet

Shownotes:

https://www.dropbox.com/scl/fi/j2068j3hlj8br96pfa7bi/CHOLLET_FINAL.pdf?rlkey=xkbr7tbnrjdl66m246w26uc8k&st=0a4ec4na&dl=0

TOC:

1. Intelligence and Model Building

[00:00:00] 1.1 Intelligence Definition and ARC Benchmark

[00:05:40] 1.2 LLMs as Program Memorization Systems

[00:09:36] 1.3 Kaleidoscope Hypothesis and Abstract Building Blocks

[00:13:39] 1.4 Deep Learning Limitations and System 2 Reasoning

[00:29:38] 1.5 Intelligence vs. Skill in LLMs and Model Building

2. ARC Benchmark and Program Synthesis

[00:37:36] 2.1 Intelligence Definition and LLM Limitations

[00:41:33] 2.2 Meta-Learning System Architecture

[00:56:21] 2.3 Program Search and Occam's Razor

[00:59:42] 2.4 Developer-Aware Generalization

[01:06:49] 2.5 Task Generation and Benchmark Design

3. Cognitive Systems and Program Generation

[01:14:38] 3.1 System 1/2 Thinking Fundamentals

[01:22:17] 3.2 Program Synthesis and Combinatorial Challenges

[01:31:18] 3.3 Test-Time Fine-Tuning Strategies

[01:36:10] 3.4 Evaluation and Leakage Problems

[01:43:22] 3.5 ARC Implementation Approaches

4. Intelligence and Language Systems

[01:50:06] 4.1 Intelligence as Tool vs Agent

[01:53:53] 4.2 Cultural Knowledge Integration

[01:58:42] 4.3 Language and Abstraction Generation

[02:02:41] 4.4 Embodiment in Cognitive Systems

[02:09:02] 4.5 Language as Cognitive Operating System

5. Consciousness and AI Safety

[02:14:05] 5.1 Consciousness and Intelligence Relationship

[02:20:25] 5.2 Development of Machine Consciousness

[02:28:40] 5.3 Consciousness Prerequisites and Indicators

[02:36:36] 5.4 AGI Safety Considerations

[02:40:29] 5.5 AI Regulation Framework

  continue reading

199 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi

Posłuchaj tego programu podczas zwiedzania
Odtwarzanie