Artwork

Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Sara Hooker - Why US AI Act Compute Thresholds Are Misguided

1:05:41
 
Udostępnij
 

Manage episode 429575778 series 2803422
Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Sara Hooker is VP of Research at Cohere and leader of Cohere for AI. We discuss her recent paper critiquing the use of compute thresholds, measured in FLOPs (floating point operations), as an AI governance strategy.

We explore why this approach, recently adopted in both US and EU AI policies, may be problematic and oversimplified. Sara explains the limitations of using raw computational power as a measure of AI capability or risk, and discusses the complex relationship between compute, data, and model architecture.

Equally important, we go into Sara's work on "The AI Language Gap." This research highlights the challenges and inequalities in developing AI systems that work across multiple languages. Sara discusses how current AI models, predominantly trained on English and a handful of high-resource languages, fail to serve the linguistic diversity of our global population. We explore the technical, ethical, and societal implications of this gap, and discuss potential solutions for creating more inclusive and representative AI systems.

We broadly discuss the relationship between language, culture, and AI capabilities, as well as the ethical considerations in AI development and deployment.

YT Version: https://youtu.be/dBZp47999Ko

TOC:

[00:00:00] Intro

[00:02:12] FLOPS paper

[00:26:42] Hardware lottery

[00:30:22] The Language gap

[00:33:25] Safety

[00:38:31] Emergent

[00:41:23] Creativity

[00:43:40] Long tail

[00:44:26] LLMs and society

[00:45:36] Model bias

[00:48:51] Language and capabilities

[00:52:27] Ethical frameworks and RLHF

Sara Hooker

https://www.sarahooker.me/

https://www.linkedin.com/in/sararosehooker/

https://scholar.google.com/citations?user=2xy6h3sAAAAJ&hl=en

https://x.com/sarahookr

Interviewer: Tim Scarfe

Refs

The AI Language gap

https://cohere.com/research/papers/the-AI-language-gap.pdf

On the Limitations of Compute Thresholds as a Governance Strategy.

https://arxiv.org/pdf/2407.05694v1

The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm

https://arxiv.org/pdf/2406.18682

Cohere Aya

https://cohere.com/research/aya

RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs

https://arxiv.org/pdf/2407.02552

Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs

https://arxiv.org/pdf/2402.14740

Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/

EU AI Act

https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf

The bitter lesson

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Neel Nanda interview

https://www.youtube.com/watch?v=_Ygf0GnlwmY

Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet

https://transformer-circuits.pub/2024/scaling-monosemanticity/

Chollet's ARC challenge

https://github.com/fchollet/ARC-AGI

Ryan Greenblatt on ARC

https://www.youtube.com/watch?v=z9j3wB1RRGA

Disclaimer: This is the third video from our Cohere partnership. We were not told what to say in the interview, and didn't edit anything out from the interview.

  continue reading

195 odcinków

Artwork
iconUdostępnij
 
Manage episode 429575778 series 2803422
Treść dostarczona przez Machine Learning Street Talk (MLST). Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez Machine Learning Street Talk (MLST) lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Sara Hooker is VP of Research at Cohere and leader of Cohere for AI. We discuss her recent paper critiquing the use of compute thresholds, measured in FLOPs (floating point operations), as an AI governance strategy.

We explore why this approach, recently adopted in both US and EU AI policies, may be problematic and oversimplified. Sara explains the limitations of using raw computational power as a measure of AI capability or risk, and discusses the complex relationship between compute, data, and model architecture.

Equally important, we go into Sara's work on "The AI Language Gap." This research highlights the challenges and inequalities in developing AI systems that work across multiple languages. Sara discusses how current AI models, predominantly trained on English and a handful of high-resource languages, fail to serve the linguistic diversity of our global population. We explore the technical, ethical, and societal implications of this gap, and discuss potential solutions for creating more inclusive and representative AI systems.

We broadly discuss the relationship between language, culture, and AI capabilities, as well as the ethical considerations in AI development and deployment.

YT Version: https://youtu.be/dBZp47999Ko

TOC:

[00:00:00] Intro

[00:02:12] FLOPS paper

[00:26:42] Hardware lottery

[00:30:22] The Language gap

[00:33:25] Safety

[00:38:31] Emergent

[00:41:23] Creativity

[00:43:40] Long tail

[00:44:26] LLMs and society

[00:45:36] Model bias

[00:48:51] Language and capabilities

[00:52:27] Ethical frameworks and RLHF

Sara Hooker

https://www.sarahooker.me/

https://www.linkedin.com/in/sararosehooker/

https://scholar.google.com/citations?user=2xy6h3sAAAAJ&hl=en

https://x.com/sarahookr

Interviewer: Tim Scarfe

Refs

The AI Language gap

https://cohere.com/research/papers/the-AI-language-gap.pdf

On the Limitations of Compute Thresholds as a Governance Strategy.

https://arxiv.org/pdf/2407.05694v1

The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm

https://arxiv.org/pdf/2406.18682

Cohere Aya

https://cohere.com/research/aya

RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs

https://arxiv.org/pdf/2407.02552

Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs

https://arxiv.org/pdf/2402.14740

Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/

EU AI Act

https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf

The bitter lesson

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Neel Nanda interview

https://www.youtube.com/watch?v=_Ygf0GnlwmY

Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet

https://transformer-circuits.pub/2024/scaling-monosemanticity/

Chollet's ARC challenge

https://github.com/fchollet/ARC-AGI

Ryan Greenblatt on ARC

https://www.youtube.com/watch?v=z9j3wB1RRGA

Disclaimer: This is the third video from our Cohere partnership. We were not told what to say in the interview, and didn't edit anything out from the interview.

  continue reading

195 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi

Posłuchaj tego programu podczas zwiedzania
Odtwarzanie