Przejdź do trybu offline z Player FM !
Episode 15: Transonic dislocation propagation observed in diamond
Manage episode 388923245 series 2602554
In this podcast episode, MRS Bulletin’s Laura Leay interviews Kento Katagiri, a postdoctoral scholar at Stanford University, about the propagation speed of dislocations in materials. Using an X-ray free electron laser to collect data from single-crystal diamond, Katagiri and colleagues have determined the velocity of wave propagation to be in the transonic region. Katagiri’s work is most applicable to extreme shock events such as missile strikes and shuttle launches where pressures of one terapascal or more might apply. The results are relevant to a type of nuclear fusion known as Inertial Confinement Fusion, which uses intense lasers to compress the fuel. This work was published in a recent issue of Science.
103 odcinków
Manage episode 388923245 series 2602554
In this podcast episode, MRS Bulletin’s Laura Leay interviews Kento Katagiri, a postdoctoral scholar at Stanford University, about the propagation speed of dislocations in materials. Using an X-ray free electron laser to collect data from single-crystal diamond, Katagiri and colleagues have determined the velocity of wave propagation to be in the transonic region. Katagiri’s work is most applicable to extreme shock events such as missile strikes and shuttle launches where pressures of one terapascal or more might apply. The results are relevant to a type of nuclear fusion known as Inertial Confinement Fusion, which uses intense lasers to compress the fuel. This work was published in a recent issue of Science.
103 odcinków
Wszystkie odcinki
×Zapraszamy w Player FM
Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.