Artwork

Treść dostarczona przez MLSecOps.com. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez MLSecOps.com lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

ML Security: AI Incident Response Plans and Enterprise Risk Culture; With Guest: Patrick Hall

38:49
 
Udostępnij
 

Manage episode 362900667 series 3461851
Treść dostarczona przez MLSecOps.com. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez MLSecOps.com lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Send us a text

In this episode of The MLSecOps Podcast, Patrick Hall, co-founder of BNH.AI and author of "Machine Learning for High-Risk Applications," discusses the importance of “responsible AI” implementation and risk management. He also shares real-world examples of incidents resulting from the lack of proper AI and machine learning risk management; supporting the need for governance, security, and auditability from an MLSecOps perspective.
This episode also touches on the culture items and capabilities organizations need to build to have a more responsible AI implementation, the key technical components of AI risk management, and the challenges enterprises face when trying to implement responsible AI practices - including improvements to data science culture that some might suggest lacks authentic “science” and scientific practices.
Also discussed are the unique challenges posed by large language models in terms of data privacy, bias management, and other incidents. Finally, Hall offers practical advice on using the NIST AI Risk Management Framework to improve an organization's AI security posture, and how BNH.AI can help those in risk management, compliance, general counsel and various other positions.

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

41 odcinków

Artwork
iconUdostępnij
 
Manage episode 362900667 series 3461851
Treść dostarczona przez MLSecOps.com. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez MLSecOps.com lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Send us a text

In this episode of The MLSecOps Podcast, Patrick Hall, co-founder of BNH.AI and author of "Machine Learning for High-Risk Applications," discusses the importance of “responsible AI” implementation and risk management. He also shares real-world examples of incidents resulting from the lack of proper AI and machine learning risk management; supporting the need for governance, security, and auditability from an MLSecOps perspective.
This episode also touches on the culture items and capabilities organizations need to build to have a more responsible AI implementation, the key technical components of AI risk management, and the challenges enterprises face when trying to implement responsible AI practices - including improvements to data science culture that some might suggest lacks authentic “science” and scientific practices.
Also discussed are the unique challenges posed by large language models in terms of data privacy, bias management, and other incidents. Finally, Hall offers practical advice on using the NIST AI Risk Management Framework to improve an organization's AI security posture, and how BNH.AI can help those in risk management, compliance, general counsel and various other positions.

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

41 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi

Posłuchaj tego programu podczas zwiedzania
Odtwarzanie