Artwork

Treść dostarczona przez The New Stack Podcast and The New Stack. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez The New Stack Podcast and The New Stack lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

How Apache Iceberg and Flink Can Ease Developer Pain

47:08
 
Udostępnij
 

Manage episode 439522425 series 75006
Treść dostarczona przez The New Stack Podcast and The New Stack. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez The New Stack Podcast and The New Stack lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

In the New Stack Makers episode, Adi Polak, Director, Advocacy and Developer Experience Engineering at Confluent discusses the operational and analytical estates in data infrastructure. The operational estate focuses on fast, low-latency event-driven applications, while the analytical estate handles long-running data crunching tasks. Challenges arise due to the "schema evolution" from upstream operational changes impacting downstream analytics, creating complexity for developers.

Apache Iceberg and Flink help mitigate these issues. Iceberg, a table format developed by Netflix, optimizes querying by managing file relationships within a data lake, reducing processing time and errors. It has been widely adopted by major companies like Airbnb and LinkedIn.

Apache Flink, a versatile data processing framework, is driving two key trends: shifting some batch processing tasks into stream processing and transitioning microservices into Flink streaming applications. This approach enhances system reliability, lowers latency, and meets customer demands for real-time data, like instant flight status updates. Together, Iceberg and Flink streamline data infrastructure, addressing developer pain points and improving efficiency.

Learn more from The New Stack about Apache Iceberg and Flink:

Unfreeze Apache Iceberg to Thaw Your Data Lakehouse

Apache Flink: 2023 Retrospective and Glimpse into the Future

4 Reasons Why Developers Should Use Apache Flink

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

  continue reading

876 odcinków

Artwork
iconUdostępnij
 
Manage episode 439522425 series 75006
Treść dostarczona przez The New Stack Podcast and The New Stack. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez The New Stack Podcast and The New Stack lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

In the New Stack Makers episode, Adi Polak, Director, Advocacy and Developer Experience Engineering at Confluent discusses the operational and analytical estates in data infrastructure. The operational estate focuses on fast, low-latency event-driven applications, while the analytical estate handles long-running data crunching tasks. Challenges arise due to the "schema evolution" from upstream operational changes impacting downstream analytics, creating complexity for developers.

Apache Iceberg and Flink help mitigate these issues. Iceberg, a table format developed by Netflix, optimizes querying by managing file relationships within a data lake, reducing processing time and errors. It has been widely adopted by major companies like Airbnb and LinkedIn.

Apache Flink, a versatile data processing framework, is driving two key trends: shifting some batch processing tasks into stream processing and transitioning microservices into Flink streaming applications. This approach enhances system reliability, lowers latency, and meets customer demands for real-time data, like instant flight status updates. Together, Iceberg and Flink streamline data infrastructure, addressing developer pain points and improving efficiency.

Learn more from The New Stack about Apache Iceberg and Flink:

Unfreeze Apache Iceberg to Thaw Your Data Lakehouse

Apache Flink: 2023 Retrospective and Glimpse into the Future

4 Reasons Why Developers Should Use Apache Flink

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

  continue reading

876 odcinków

All episodes

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi