Artwork

Treść dostarczona przez TWIML and Sam Charrington. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez TWIML and Sam Charrington lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.
Player FM - aplikacja do podcastów
Przejdź do trybu offline z Player FM !

Chronos: Learning the Language of Time Series with Abdul Fatir Ansari - #685

43:05
 
Udostępnij
 

Manage episode 419258464 series 2355587
Treść dostarczona przez TWIML and Sam Charrington. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez TWIML and Sam Charrington lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Today we're joined by Abdul Fatir Ansari, a machine learning scientist at AWS AI Labs in Berlin, to discuss his paper, "Chronos: Learning the Language of Time Series." Fatir explains the challenges of leveraging pre-trained language models for time series forecasting. We explore the advantages of Chronos over statistical models, as well as its promising results in zero-shot forecasting benchmarks. Finally, we address critiques of Chronos, the ongoing research to improve synthetic data quality, and the potential for integrating Chronos into production systems.

The complete show notes for this episode can be found at twimlai.com/go/685.

  continue reading

728 odcinków

Artwork
iconUdostępnij
 
Manage episode 419258464 series 2355587
Treść dostarczona przez TWIML and Sam Charrington. Cała zawartość podcastów, w tym odcinki, grafika i opisy podcastów, jest przesyłana i udostępniana bezpośrednio przez TWIML and Sam Charrington lub jego partnera na platformie podcastów. Jeśli uważasz, że ktoś wykorzystuje Twoje dzieło chronione prawem autorskim bez Twojej zgody, możesz postępować zgodnie z procedurą opisaną tutaj https://pl.player.fm/legal.

Today we're joined by Abdul Fatir Ansari, a machine learning scientist at AWS AI Labs in Berlin, to discuss his paper, "Chronos: Learning the Language of Time Series." Fatir explains the challenges of leveraging pre-trained language models for time series forecasting. We explore the advantages of Chronos over statistical models, as well as its promising results in zero-shot forecasting benchmarks. Finally, we address critiques of Chronos, the ongoing research to improve synthetic data quality, and the potential for integrating Chronos into production systems.

The complete show notes for this episode can be found at twimlai.com/go/685.

  continue reading

728 odcinków

Wszystkie odcinki

×
 
Loading …

Zapraszamy w Player FM

Odtwarzacz FM skanuje sieć w poszukiwaniu wysokiej jakości podcastów, abyś mógł się nią cieszyć już teraz. To najlepsza aplikacja do podcastów, działająca na Androidzie, iPhonie i Internecie. Zarejestruj się, aby zsynchronizować subskrypcje na różnych urządzeniach.

 

Skrócona instrukcja obsługi